Amaths1 SURDS-irrational roots




INDICES
a0 = 1
am × an = am+n
an × bn = (ab)n
(am)n = amn






LOGARITHMS
ab = C (index form) logaC = b (logarithmic form) C>0,a>0,a1

loga xy = logax + logay
loga (x/y) = logax - logay
loga xn = n logax
loga a = 1
loga 1 = 0
lg = log10
lg C = b 10b = C

loge x = ln x
eb = C ln C = b
ln xy = ln x + ln y
ln (x/y) = ln x - ln y
ln xn = n ln x
ln e = 1




ax = b, (b = an) ax = an > x = n (a -1,0,1)

QUADRATIC EQUATIONS: ax2 + bx + c = 0

Discriminant = b2 - 4ac
b2 - 4ac > 0 real and distinct roots
b2 - 4ac = 0 real and equal roots
b2 - 4ac < 0 no real roots

y = ax2 + bx + c
a(x - a)(x - b) [turning point.: x = (a+b)÷2]
a(x - h)2 + k [(h,k) = turning pt.]
a < 0 max.pt., a > 0 min. pt.



(x - a)(x - b) < 0 a < x < b
(x - a)(x - b) > 0 x < a or x > b


REMAINDER THEOREM
f(x) divided by (x - a) > remainder = f(a)

FACTOR THEOREM
(x - a): factor of f(x) > f(a) = 0

CUBIC EQUATIONS
px3 + qx2 + rx + s = 0 (x - a)(ax2 + bx + c) = 0   [s 0, (x - a) = a factor)]

COORDINATE GEOMETRY




= ½(x1 y2 + x2 y3 + x3 y1 - y1 x2 - y2 x3 - y3 x1)
[A = (x1, y1), B = (x2, y2), C = (x3, y3), pts. taken in anti-clockwise direction]

Equation of a straight line
y - y1 = m(x - x1) [(x1, y1) lines on line]

Parallel lines
y = m1x + c1 & y = m2x + c2 are parallel m1 = m2

Perpendicular lines
y = m1x + c1 & y = m2x + c2 are perpendicular, m1m2 = -1

LINEAR LAW
Y = mX + c [m & c = constant, Y & X = variables]

FUNCTIONS
f : x x + 1 f(x) = x+1

Finding the Inverse Function
f : x x + 1: Let f(x) = y y = x + 1 Make x the subject x = y-1 f -1 : x y-1

gf(x)= g(f(x))
(gf)-1 = f-1g-1 f-1f(x) = ff-1 (x) = 1
In graphs, f-1(x) = reflection of f(x) in the line y = x


ABSOLUTE VALUES
|x| = absolute value of x (numerical value)
| ±x |= x


Amaths2
Amaths3
Amaths4
Amaths5

Back to notes index